The real positive definite completion problem for a 4-cycle
نویسندگان
چکیده
منابع مشابه
The Positive Definite Matrix Completion Problem: an Optimization Viewpoint∗
We look at the real positive (semi)definite matrix completion problem from the relative entropy minimization viewpoint. After the problem is transformed into the standard maxdet from, conditions are sought for existence of positive (semi)definite completions. Using basic tools of convex analysis results previously established using graph-theoretic or functional-analytic techniques are recovered...
متن کاملActive Positive-Definite Matrix Completion
In the FindCandidates function (line 4), Select finds all the single edges that can be added to the current mask graph GΩ while maintaining its chordal structure. To do that, we make use of the clique tree data structure as introduced by Ibarra [1]. Given a graph G = (V,E), the clique tree is a tree C = (VC , EC), in which each node is a maximal clique of G, i.e., VC ⊂ 2 . In our case the numbe...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولPOSITIVE DEFINITE COMPLETION PROBLEMS FOR DIRECTED ACYCLIC GRAPHS By
A positive definite completion problem pertains to determining whether the unspecified positions of a partial (or incomplete) matrix can be completed in a desired subclass of positive definite matrices. In this paper we study an important and new class of positive definite completion problems where the desired subclasses are the spaces of covariance and inverse-covariance matrices of probabilis...
متن کاملA New Algorithm for the Positive Semi-definite Procrustes Problem
For arbitrary real matrices F and G, the positive semi-deenite Procrustes problem is minimization of the Frr obenius norm of F ? PG with respect to positive semi-deenite symmetric P. Existing solution algorithms are based on a convex programming approach. Here an unconstrained non-convex approach is taken, namely writing P = E 0 E and optimizing with respect to E. The main result is that all lo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2001
ISSN: 0024-3795
DOI: 10.1016/s0024-3795(01)00317-2